USN

First Semester M.Tech. Degree Examination, Dec.2015/Jan.2016 Digital VLSI Design

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.

- 1 a. Derive the expression for threshold voltage V_T in terms of body effect and surface potential.

 (10 Marks)
 - b. Calculate the threshold voltage, V_{TO} at $V_{SB} = 0$ V, for a polysilicon gate n-channel MOS transistor, with the following parameters: Substrate doping density, $N_A = 10^{16}$ cm⁻³, Polysilicon gate density (doping), $N_D = 2 \times 10^{20}$ cm⁻³, gate oxide thickness $t_{OX} = 400$ Å, oxide interface fixed charge density, $N_{OX} = 4 \times 10^{10}$ cm⁻² and assume $\phi_{F(gate)} = 0.55$ V, ϵ_{si} , the silicon permittivity as $11.7 \times 8.85 \times 10^{-14}$ F/cm and ϵ_{OX} , Permittivity of gate oxide in $3.97 \times 8.85 \times 10^{-14}$ F/cm.
 - c. Why we need scaling and what are its effects in long channel and short channel? (04 Marks)
- 2 a. Derive expression for V_{OH}, V_{OL}, V_{IL} and V_{IH} interms of threshold voltage, for n-type depletion mode load inverter. (10 Marks)
 - b. Calculate the critical voltages V_{OL} , V_{OH} , V_{IL} and V_{IH} and find the noise margins of the depletion load inverter circuit with the following parameters: $V_{DD} = 5 \text{ V}$, $V_{TO_{(driver)}} = 1.0 \text{ V}$,

$$V_{\text{TO (load)}} = -3.0 \text{ V}, \\ \left(\frac{\omega}{L}\right)_{\text{(driver)}} = 2, \\ \left(\frac{\omega}{L}\right)_{\text{(load)}} = \frac{1}{3}, \\ K_{\text{n(driver)}} = K_{\text{n(load)}} = 25 \\ \frac{\mu A}{V^2}, \\ \gamma = (0.4)V^{\frac{1}{2}}, \\ \gamma = (0.4)V^{\frac$$

 $\phi_F = -0.3V$. Assume suitably for iterations values.

(08 Marks) (02 Marks)

c. Differentiate enhancement mode and depletion mode inverters.

- 3 a. Obtain expression for τ_{PHL} and τ_{PLH} for CMOS inverter interms of V_T and V_{DD} and capacitance. (10 Marks)
 - b. With suitable circuit explain, how to estimate interconnect Parasitics. (05 Marks)
 - Show that switching power dissipation of CMOS inverter is given by $P_{avg} = C_{load} V_{dd^2} f$, where f is the switching frequency. (05 Marks)
- 4 a. Explain briefly with suitable circuit pass transistor in dynamic logic design. (05 Marks)
 - Explain how to overcome threshold voltage drop in integrated circuits using voltage bootstrapping technique.
 (10 Marks)
 - Briefly explain cascaded domino CMOS logic circuit for high performance dynamic logic circuit.
 (05 Marks)
- 5 a. Explain memory structure of SRAM with read and write circuitry with the help of read and write timing diagrams. (10 Marks)
 - b. Explain briefly Flash-memory using NOR-cell configuration. (06 Marks)
 - c. Differentiate DRAM and SRAM. (04 Marks)
- 6 a. What is leakage power dissipation? On what parameters does it depend? (04 Marks)
 - b. Explain briefly adiabatic logic circuit with AND / NAND logic gates. (10 Marks)
 - c. Explain the concept of switching activity with suitable state transition diagram. (06 Marks)

14EVE12

7	a.	Differentiate BJT, CMOS and BiCMOS.	(06 Marks)
	b.	Explain the static behavior of BiCMOS inverter.	(10 Marks)
	c.	Realise basic NAND gate with V _A and V _B as inputs by using BiCMOS.	(04 Marks)
8	_	Write a short notes on the following:	

a. ESD-Protection in I/O circuits.

b. Switching delay in BiCMOS logic circuits.

c. Parametric yield estimation in design for manufacturability.

d. Worst case analysis in manufacturing process.

(20 Marks)